
Recurrent Human Pose Estimation
CS231A Project

Matthew Chen
Department of Computer Science

Stanford University
mcc17@stanford.edu

Melvin Low
Department of Computer Science

Stanford University
mwlow@stanford.edu

1. Introduction

Human pose estimation is the task of estimating the
joint locations of one or multiple people within an im-
age. It is a core challenge in computer vision because
it forms the foundation of more complex tasks such as
activity recognition and motion planning. For exam-
ple, joint locations have been used to supplement other
visual features to determine the trajectory of a person
through a sequence of video frames.

In the past, the leading techniques for pose estima-
tion were the deformable parts model and its variants.
These approaches used convolutions of fast part detec-
tors over the input image to generate a coherent joint
configuration [3]. More recently, deep learning tech-
niques such as convolutional neural networks as well
as optimization methods such as mixed integer pro-
grams have achieved state of the art results, for detect-
ing both single and multiple people.

From a probabilistic perspective, pose estimation
is the task of finding a joint configuration of n
joints, y1, y2, ..., yn, given a source image x, i.e.
argmaxy1,...,yn p(y1, ...yn|x). Several state of the art
methods have attempted to calculate this directly with
a convolutional neural net. While this has worked very
well, the natural dependencies between human joints
suggest that explicitly modeling these dependencies
may give a boost in performance. This corresponds
to calculating

argmax
yi

p(yi|yi−1, yi−2, ..., y1, x), i = 1, 2, ..., n

—generating the joints one at a time in sequence. This
paper investigates this approach. We use a recurent
network architecture, which is particularly well suited
for capturing sequence information. Preliminary re-

sults show that the recurrent approach unfortunately
performs much worse than the straightforward convo-
lutional one. It seems to enforce joint relationships too
strongly and thus tends toward the most common pose
in the dataset.

2. Previous Work

Prior to the widespread use of neural networks in
computer vision, classic approaches were applied to
the problem of pose estimation. These approaches
generally took the form of expressing the body as a
graphical model and encoding priors on the likely con-
figurations of the parts [4]. A joint objective would
then be optimized which accounted for both the match
score from a part detector and the likelihood of the re-
sulting configuration. These models, however, suffer
in terms of computational tractability as they involve
inference over a graphical model. Many of the tech-
niques deployed to improve the tractability come with
costs to the expressiveness of such models[16].

DeepPose was one of the first papers to deploy deep
networks for this problem. The authors formulated the
problem as a regression task. In their model the joint
coordinates were predicted directly from a regression
layer of a convolutional neural network (CNN). Due to
the need to downsize the original image to fit the fixed
CNN input size of 224 by 224 they used a cascade of
CNN classifiers [13], each cropping the picture centred
around the previous prediction at a higher resolution,
to further refine their pose estimates. One issue with
this approach is that the errors from previous mistakes
can propagate into future decisions as each choice in-
volves a crop of the image and thus limits the possible
domain of solutions.

The authors in [2] similarly use a CNN to predict

1



joint coordinates but add a iterative feedback mecha-
nism where an initial pose is refined at every timestep
given the image and the previous estimate. They ac-
complish this by defining an error function over joint
offsets which measures the residual estimate error and
learn a model to minimize this objective. An advan-
tage of such an approach is that each timestep can get
a better estimate of the joint distribution of the body
pose given the previous estimate, incorporating some
of the dependencies which exist between them. This
idea of iterative refinement has been broadly adapted
in many of the subsequent works. The methodology
seems to build upon recent work on efficiently training
deep networks by using residuals [6].

A feedback mechanism is used in [5] to model pose
error in 3D images using a recurrent neural network
(RNN). They find that using an RNN is able to im-
prove performance by taking into account error de-
pendencies across refinement steps. However, we have
not found much in literature regarding a recurrent ap-
proach to directly model the joints.

Another notable approach, DeepCut, formulated the
problem as an integer linear program and solves a
global optimization problem [10]. The problem ad-
dresses the multi-person pose estimation which gen-
eralizes the single person task which we focus on in
this paper. Their approach involves inference over a
probabilistic model in which they use part detectors
as unary factors and joint part dependencies as binary
factors. In this light, it builds upon some of the previ-
ous ideas used in deformable parts models. However
they use more expressive parts detectors, an adaptation
of recent detection work [11], and a global objective
function.

One limitation of using a standard CNN based
model is that information, which can be used for fine
grained localization, can be lost in the pooling layers
of the network. This problem was addressed in Deep
Pose with the cascade of networks, however this ap-
proach propagated errors from previous decisions.Two
recent papers are able to achieve new state of the art
results by addressing these limitations in their models.
In Pose Machines, the authors take a multi-stage ap-
proach where they extract features from a local region
in the image in one stage and then incorporate more
global features in the latter stages [14]. Each stage is
trained with using intermediate supervision and is able

to iteratively refine the initial joint estimates with more
information.

Similarly in Stacked Hourglass Networks, the au-
thors propose a architecture which involves extracting
features from images at different scales. These fea-
tures are then concatenated with a deconvolution stage,
creating an hourglass shape architecture [9]. By run-
ning the network across scales the architecture is the-
oretically able to incorporate global and local infor-
mation into its estimates. Furthermore the stacking of
multiple hourglasses can be seen as another form of
iterative refinement.

3. Dataset

We used the MPII human pose estimation dataset,
which is composed of 25,000 RGB images annotated
with over 40,000 human poses [1]. The images were
collected by sampling 3,913 videos from Youtube in
various frames, which are at least 5 seconds apart, and
filtering images which contained people. The anno-
tations were obtained via crowd sourcing on Amazon
Mechanical Turk and take the form of pixels coordi-
nates corresponding to 16 joints for a given person in
an image. A given image may contain multiple peo-
ple, so we centered and cropped each image around
a single person with some padding around their joint
locations.

4. Methodology

We hypothesize that estimating joint locations se-
quentially will be able to better capture the depen-
dency between joint locations since we explicitly con-
dition on previous joint decisions. We choose to use
a recurrent neural network model because it is able to
express dependencies across sequences. Such models
are common in natural language tasks which are nat-
urally modelled as sequences. To test this hypothe-
sis we choose our comparison baseline model to be a
generic CNN which regresses all joint locations in one
pass. This is similar to the method proposed in Deep-
Pose, however we do not implement their cascade of
network classifiers so we can isolate the effects of the
sequence modelling without the added effect of refine-
ment through higher resolution. For our experimental
model we use a RNN whose inputs are feature which
were extracted from the last convolutional layers of
the CNN used for the base model. Comparing the two

2



Section Type Parameters
Layer 1 conv3-64 1,728

conv3-64 36,864
maxpool 0

Layer 2 conv3-128 73,728
conv3-128 147,456
maxpool 0

Layer 3 conv3-256 294,912
conv3-256 589,824
conv3-256 589,824
maxpool 0

Layer 4 conv3-512 1,179,648
conv3-512 2,359,296
conv3-512 2,359,296
maxpool 0

Layer 5 conv3-512 2,359,296
conv3-512 2,359,296
conv3-512 2,359,296
maxpool 0

Layer 6 fc-4096 102,760,448
Layer 7 fc-4096 16,777,216

fc-19 77,824
softmax 0

Total 134,325,952

Table 1: VGGNet architecture and number of parame-
ters

would thus show the difference in performance based
on modelling the pose as a sequence. Full details on
the models used are provided below.

4.1. CNN Base Architecture

We implemented a CNN based off of VGG16 as our
base model [12]. VGG16 consists of a stack of convo-
lutional layers followed by two fully connected layers.
A chart of the full architecture along with the num-
ber of parameters associated with each layer is shown
in Table 1. We modified the network by adding batch
normalization layers after each non-linearity in order
to improve training. The output of the fully connected
layers was a 32 dimensional vector, corresponding to
the (x, y) coordinates of 16 joints.

Image CNN LSTM

LSTM

LSTM Head

Shoulder1

Shoulder2

Figure 1: CNN-RNN architecture. A CNN is used to
extract features from each image, which are then fed
into an LSTM. The LSTM produces joint coordinates
in pixel space.

4.2. CNN-RNN Architecture

We used the same base architecture to produce the
initial hidden state and input to the RNN. A long short-
term memory (LSTM) architecture was used for the
RNN. The LSTM augments the traditional RNN for-
mulation with a cell state, which allows gradients to
flow additively through the network instead of multi-
plicatively. Concretely, at each timestep, the LSTM
takes xt, ht−1, ct−1 and produces ht, ct via the follow-
ing calculations:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf )

ot = σ(W oxt + Uoht−1 + bo)

gt = tanh(W gxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where it, ft, ot are the input, forget, and output
gates. This structure improves gradient flow and has
resulted in LSTMs being used to great success in re-
cent literature for a wide variety of tasks.

We used two stacked LSTMs with a hidden state
size of 128 and 16 timesteps. At each timestep, the
hidden state of the LSTMs was projected into a two
dimensional vector, which corresponded to the loca-
tion of a single joint in the image (hence 16 timesteps
for 16 joints).

3



4.3. LSTM with Attention

One issue with the current proposed architectures is
that we need to downsize the input image to the input
size of the CNN, which is 224 by 224. There is likely
information lost at this stage which is acceptable for
many classification tasks but not for precise localiza-
tion. To deal with this problem we experiment with
a soft attention for our CNN-RNN model. Soft atten-
tion was introduced by Xu et al. [15] and described
a method to “guide” the focus of the recurrent neu-
ral network through the input image, over time. The
mechanism attempted to relieve the feature encoder (a
convolutional neural network in both our work and Xu
et al.) of the need to compress the entire image into a
single output vector. In order to implement attention,
we made the following changes:

• We removed the two fully connected layers from
our CNN, as suggested by Xu et al. Instead, we
take the output of the last convolutional layer as
input to the recurrent network. We call this out-
put the annotation vectors or annots, with dimen-
sions (w∗h, c) for a single image. c is the number
of channels of the last convolutional filter, and w
and h are the width and height of the image after
passing through multiple max-pooling layers. In
our case, w = h = 14 and c = 512. Thus we
have 196 row vectors of size 512 each.

• At every timestep t, we calculate

α =MLP (ht−1, annots)

, where MLP is a multiplayer perceptron and ht−1

is the hidden state of the LSTM from the previous
timestep. α is a single vector of dimensionwh, or
196 in our case. The initial state of the LSTM is
the mean of the annotation vectors.

• We calculate the next input to the LSTM as
the weighted sum of the annotation vectors, α ∗
annots.

4.4. Training

We used l2 loss aggregated over all timesteps. The
stochastic optimizer was Adam, which is a recent op-
timizer which was shown empirically to be faster than
stochastic gradient descent. The learning rate was set

initially to 0.001, and was reduced by a factor of 2
every 1000 batch iterations. The model was imple-
mented using TensorFlow and took one day to train on
a Nvidia GTX 980 Ti.

4.5. Evaluation

To compare our results to previous works we use
the standard percentage of correct key points (PCKh)
measure. The h denotes that the measure is normalized
by the length of the head in each image. This measure
is calculated by counting the percentage of correct lo-
calizations for a given part across all images. A esti-
mate is classified as correct if it falls within a certain
distance of the ground truth annotation. That distance
is defined to be half the length of the persons head in a
given image.

Additionally we calculate the root mean squared er-
ror (RMSE) of the joint coordinates across all joints
and training examples. This measure calculates the the
average pixel distance of all visible joints in the image.

5. Results

Figure 2: Training and validation RMSE over time for
the CNN base model.

4



Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Iterative Error[2] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
DeepCut[10] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Pose Machines[14] 97.7 94.5 88.3 83.4 87.9 81.9 78.3 87.9
Stacked Hourglass[9] 97.6 95.4 90.0 85.2 88.7 85.0 80.6 89.4
Our Base Model 52.0 40.6 22.5 16.8 31.7 21.2 16.0 32.8
Our LSTM Model 39.2 25.2 12.2 9.7 18.7 16.6 7.5 21.5

Table 2: Model Performance Comparison (PCKh)

Figure 3: Training and validation RMSE over time for
the RNN-CNN model.

Our experiments show that the CNN base architec-
ture performed much better than the CNN-RNN one.
The RMSE over time during training, for the base
model, are shown in Figure 2. We can see that RMSE
error decreased for both the training and the valida-
tion set but levelled off to still a fairly high level. The
training process for the CNN-RNN model followed the
same trend but levelled off much earlier as shown in 3.

To get a better understanding of what the model
learned we do a qualitative analysis of the output of
each model. Sample output images where we connect
all the joints to form the complete pose are shown in

Figures 4 for the base model. We can see that even
through there are high errors in the localization of the
joint coordinates, the pose does adapt in reasonable
ways to the underlying image. This however is not the
case when we examine similar output form the CNN-
RNN model as shown in Figure 5. It seems that the
model here simply learned the average pose across all
images, and makes minimal adjustments to that aver-
age pose at test time.

Adding attention to the LSTM did not, unfortu-
nately, improve or change its performance. Thus, we
did not include the attention results for sake of concise-
ness, and the results shown in the following sections
are for the simple LSTM model.

Finally, PCKh measures and comparisons are pro-
vided in Table 2 to show the relative performance
against a selection of the current state of the art mod-
els.

6. Discussion

We suspect that the recurrent network regressed to-
ward the most common pose in the dataset. This might
occur, for example, if the RNN had not learned to fully
utilize the output of the CNN or the CNN was not well-
trained, and thus the model was calculating:

argmax
yi

p(yi|yi−1, yi−2, ..., y1), i = 1, 2, ..., n

instead of:

argmax
yi

p(yi|yi−1, yi−2, ..., y1, x), i = 1, 2, ..., n

.
This would be problematic because it may be the

case that knowing y1 alone may be insufficient to

5



Figure 4: Sample predictions for the CNN base model.
The model seems to be learning effectively.

Figure 5: Sample predictions for the CNN-RNN
model. The estimated poses seem to be shifting
slightly toward ground truth, but seem to contain no-
ticeable “inertia.”

estimate the correct y2. In this case, estimating
the most common pose would make sense. Hav-

ing a larger training set may have alleviated this
problem. We also suspect that errors compounded
through time in the recurrent network. Specifically, if
argmaxy2 p(y2|y1, x) is calculated incorrectly, then it
is likely that argmaxy3 p(y3|y2, y1, x) would also be
calculated incorrectly. The base model did not explic-
itly model these conditional probabilities so it would
not suffer from this problem.

Another possible explantion for why the LSTM per-
formed poorly is that modeling joints as a sequence
placed too many constraints on the model. In other
words, the recurrent formulation of the problem was
incorrect. This might explain why adding attention did
not improve the performance of the LSTM. Attention
gives more information to the recurrent network, but if
a recurrent structure was incorrect to begin with, then
it would not help.

7. Conclusion

In this project, we investigated the possibility of
modelling pose estimation as a sequence task. We
tested this hypothesis via use of a convolutional net-
work linked to a recurrent one. For comparison, we
also tested just the convolutional network on the same
task. Our preliminary results show that the CNN-
RNN performed worse than the CNN. We also found
that adding attention did not improve the result of
the CNN-RNN. Further work can will expand upon
specific reasons why the the model performed worse
than the baseline with additional quantitative results
to test our hypothesis. Code for this project can be
found at https://github.com/electric26/
posernn.

References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and
B. Schiele. 2d human pose estimation: New
benchmark and state of the art analysis. In Com-
puter Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 3686–3693.
IEEE, 2014.

[2] J. Carreira, P. Agrawal, K. Fragkiadaki, and
J. Malik. Human pose estimation with
iterative error feedback. arXiv preprint
arXiv:1507.06550, 2015.

6

https://github.com/electric26/posernn
https://github.com/electric26/posernn


[3] P. F. Felzenszwalb, R. B. Girshick,
D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-
based models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(9):1627–
1645, 2010.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Pic-
torial structures for object recognition. Interna-
tional Journal of Computer Vision, 61(1):55–79,
2005.

[5] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung,
and L. Fei-Fei. Viewpoint invariant 3d human
pose estimation with recurrent error feedback.
arXiv preprint arXiv:1603.07076, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

[7] D. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] I. Lifshitz, E. Fetaya, and S. Ullman. Human
pose estimation using deep consensus voting.
arXiv preprint arXiv:1603.08212, 2016.

[9] A. Newell, K. Yang, and J. Deng. Stacked hour-
glass networks for human pose estimation. arXiv
preprint arXiv:1603.06937, 2016.

[10] L. Pishchulin, E. Insafutdinov, S. Tang, B. An-
dres, M. Andriluka, P. Gehler, and B. Schiele.
Deepcut: Joint subset partition and labeling for
multi person pose estimation. arXiv preprint
arXiv:1511.06645, 2015.

[11] S. Ren, K. He, R. Girshick, and J. Sun. Faster
r-cnn: Towards real-time object detection with
region proposal networks. In Advances in Neu-
ral Information Processing Systems, pages 91–
99, 2015.

[12] K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[13] A. Toshev and C. Szegedy. Deeppose: Human
pose estimation via deep neural networks. In
Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages
1653–1660, 2014.

[14] S.-E. Wei, V. Ramakrishna, T. Kanade, and
Y. Sheikh. Convolutional pose machines. arXiv
preprint arXiv:1602.00134, 2016.

[15] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhut-
dinov, R. Zemel, and Y. Bengio. Show, at-
tend and tell: Neural image caption gener-
ation with visual attention. arXiv preprint
arXiv:1502.03044, 2015.

[16] Y. Yang and D. Ramanan. Articulated pose esti-
mation with flexible mixtures-of-parts. In Com-
puter Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1385–1392.
IEEE, 2011.

7


